Identification of C-H Bond Vibration Mode Using Absorption Spectroscopy By A Simple Optically Configured Setup

Authors

DOI:

https://doi.org/10.53655/joe.c1987k

Keywords:

Absorption Spectrum, Interferometer, Spectrometer

Abstract

An optical system model for the identification of Carbon-Hydrogen stretching using spectroscopy is demonstrated and applied to the experiment setup. The optical simulation is achieved using simulation software and performed in a two-mirror system. The optical setup covers a wavelength range of 600 nm to 1200 nm which is a new study based on carbon-hydrogen stretch and test with samples from the alkene group. Significant results of the Carbon-Hydrogen stretch from the alkene group at 1149 nm are detected in Dichloromethane and ethanol. This observation is recorded in real-time and applied in a fast diagnostic system. The isosbestic point of water is measured at 970 nm and useful for our system spectral calibration. The result also shows the ability to quantify the chemical bond of a sample based on two peaks of absorption due to the C-H stretching. This gives a better opportunity for Chemometrics to perform accurately.

References

J. Ribaudo, “Balloon and button spectroscopy: A hands-on approach to light and matter,” The Physics Teacher, vol. 54, no. 6, pp. 330–334, 2016. https://doi.org/10.1119/1.4961171.

L. H. Lajunen and P. Peramaki, Spectrochemical Analysis by Atomic Absorption and Emission. The Royal Society of Chemistry, 2004, pp. X001–X004, ISBN: 978-0-85404-624-9. https://doi.org/10.1039/9781847551900.

J. M. Hollas, Modern spectroscopy. JohnWiley & Sons, 2004, ISBN: 978-0-470-84416-8.

A. Arons and M. Peppard, “Einstein’s proposal of the photon concept—a translation of the Annalen der Physik paper of 1905,” American Journal of Physics, vol. 33, no. 5, pp. 367–374, 1965.

G. Reich, “Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications,” Advanced drug delivery reviews, vol. 57, no. 8, pp. 1109–1143, 2005. https://doi.org/10.1016/j.addr.2005.01.020.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared

spectroscopy and chemometrics in pharmaceutical technologies,” Journal of pharmaceutical and biomedical analysis, vol. 44, no. 3, pp. 683–700, 2007. https://doi.org/10.1016/j.jpba.2007.03.023.

B.Waruru, K. Shepherd, G. Ndegwa, A. Sila, and P. Kamoni, “Application of mid-infrared spectroscopy for rapid characterization of key soil properties for engineering land use,” Soils and Foundations, vol. 55, no. 5, pp. 1181–1195, 2015. https://doi.org/10.1016/j.sandf.2015.09.018Get.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection,” Advanced drug delivery reviews, vol. 89, pp. 121–134, 2015. https://doi.org/10.1016/j.addr.2015.03.009.

C.Wang, Z.Wang, T. Zhao, et al., “Optical molecular imaging for tumor detection and image-guided surgery,” Biomaterials, vol. 157, pp. 62–75, 2018. https://doi.org/10.1016/j.biomaterials.2017.12.002.

S. Koljenovic, T. B. Schut, R. d.Wolthuis, et al., “Tissue characterization using high wave number Raman spectroscopy,” Journal of biomedical optics, vol. 10, no. 3, pp. 031 116–03 111 611, 2005. https://doi.org/10.1117/1.1922307.

D. A. Burns and E. W. Ciurczak, Handbook of near-infrared analysis. CRC press, 2007, ISBN: 9780849373930.

A. Alfonso-Garcia, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: A tutorial,” Journal of biomedical optics, vol. 19, no. 7, pp. 071 407–071 407, 2014. https://doi.org/10.1117/1.jbo.19.7.071407.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E.Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” Journal of Raman Spectroscopy, vol. 43, no. 5, pp. 637–643, 2012, ISSN: 1097-4555. https://doi.org/10.1002/jrs.3169.

R. Oeschger, B. Su, I. Yu, et al., “Diverse functionalization of strong alkyl C–H bonds by undirected borylation,” Science, vol. 368, no. 6492, pp. 736–741, 2020. https://doi.org/10.1126/science.aba6146.

G. A. Jardim, D. J. Lima, W. O. Valença, et al., “Synthesis of selenium-quinone hybrid compounds with potential antitumor activity via Rh-catalyzed CH bond activation and click reactions,” Molecules, vol. 23, no. 1, p. 83, 2018. https://doi.org/10.3390/molecules23010083.

F. J. Duarte, “Ray transfer matrix analysis of multiple-prism dye laser oscillators,” Optical and Quantum Electronics, vol. 21, no. 1, pp. 47–54, 1989. https://doi.org/10.1007/BF02199466.

F. J. Duarte, “Dispersive dye lasers,” in High-Power Dye Lasers, F. J. Duarte, Ed., Springer, 1991, pp. 7–43. https://doi.org/10.1007/978-3-540-47385-5_2.

D. Malacara-Hernández and Z. Malacara-Hernández, Handbook of optical design. CRC Press, 2013, ISBN: 9781439867990.

A. Schuster, An introduction to the theory of optics. E. Arnold, 1904.

S. H.Nabavi, M. H. Khodabandeh, M. Golbabaee, A. Moshaii, and M. D. Davari, “Excited states study reveals the twisted geometry induced large stokes shift in DCM fluorescent dye,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 354, pp. 127–138, 2018. https://doi.org/10.1016/j.jphotochem.2017.05.017.

H. Maeda, N. Eifuku, Y. Haketa, Y. Ito, E. Lee, and M. Lee, “Water-supported organized structures based on wedge-shaped amphiphilic derivatives of dipyrrolyldiketone boron complexes,” Physical Chemistry Chemical Physics, vol. 13, no. 9, pp. 3843–3850, 2011. https://doi.org/10.1039/C0CP02294B.

B. Hou, D. Zhang, S. Zhao, et al., “Scalable and dii-compatible optical clearance of the mammalian brain,” Frontiers in neuroanatomy, vol. 9, 2015. https://doi.org/10.3389/fnana.2015.00019.

G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Applied optics, vol. 12, no. 3, pp. 555–563, 1973. https://doi.org/10.1364/AO.12.000555.

J. Jeon, S. Park, and B. J. Lee, “Optical property of blended plasmonic nanofluid based on gold nanorods,” Optics express, vol. 22, no. 104, A1101–A1111, 2014. https://doi.org/10.1364/OE.22.0A1101.

H. Yamatera, B. Fitzpatrick, and G. Gordon, “Near infrared spectra of water and aqueous solutions,” Journal of Molecular Spectroscopy, vol. 14, no. 1, pp. 268–278, 1964. https://doi.org/10.1016/0022-2852(64)90121-3.

K. Buijs and G. Choppin, “Near-infrared studies of the structure of water. i. pure water,” The Journal of Chemical Physics, vol. 39, no. 8, pp. 2035–2041, 1963. https://doi.org/10.1063/1.1734579.

Downloads

Published

15-07-2021

How to Cite

Ali, N., Syed Junid, S. A. A., Ahmad, N. A. M. ., Che Beson, M. R., & Endut, R. (2021). Identification of C-H Bond Vibration Mode Using Absorption Spectroscopy By A Simple Optically Configured Setup. Jurnal OptoElektronik. https://doi.org/10.53655/joe.c1987k

Issue

Section

Articles